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8.1 INTRODUCTION

The objective of this chapter is to present a systematized approach to GaAs
FET amplifier design. The broadband design techniques discussed here are
also applicable to narrowband amplifier design as an inclusive subset. A
two-stage power amplifier design is included as an example. Finally, MMIC
(monolithic microwave integrated circuit) realization of lumped element
designs is discussed.

With the exception of distributed amplifiers, microwave amplifiers are
usually comprised of several GaAs FET devices interconnected with input,
interstage, and output impedance matching networks. This is shown con-
ceptually in Fig. 8.1. The specific amplifier application will usually de-
termine the necessary impedance behavior which must be provided by each
network. The important point here is that the methodology by which the
networks are obtained remains the same, regardless of application. For
example, the techniques that we are about to consider are applicable to both
low-noise amplifiers and power amplifiers. They are equally applicable to
single- or multistage amplifier design requirements. In fact, they also
provide an effective means of insuring optimum narrowband design as well.

In order to see that the network problem for all broadband amplifier
applications is really the same, several applications will be now considered.
Each case will then be reduced to the (same) problem of obtaining an LC
network with some desired driving-point impedance behavior.

1. Low-noise amplifier. From the optimum noise reflection coefficient
Pop» the desired matching network driving-point impedance Zg can be

determined
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Figure 8.1 Three basic matching problems of a multi stage amplifier.

Hence, the input design requirements are in the desired form. Flat amplifier
gain can be achieved by controlled mismatch at the output port of the
device. Typically, constant gain circles are plotted for this interface. A
desired load impedance Z; is then determined. Therefore, the output
matching network is also specified in the desired form.

2. Power Amplifier. Either from load line considerations or load—pull
data the optimum load impedance Z, , is determined. The design task is to
obtain an output matching network that provides this optimum load impe-
dance behavior. Usually, minimum input port reflection is desired. The
device input reflection coefficient S}, is determined:
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From the input reflection coefficient S}, , the desired matching network
driving-point impedance Z¢ can be determined:

1+ 8,
Zs =50 —"——7%

1—8,,
So, the input matching network design requirements are also in the desired
form.

3. Interstage of High Gain Amplifier. S;, of the second stage must be
matched to S,, of the first stage. If mismatch gain slope compensation is
desired, constant gain contours can be used to select the desired load
impedance Z, . for the first stage. The interstage matching network must
transform the second-stage input impedance Z,, into the desired load for

the first stage, Z; ,.:

~

1+ S,

ZIN 250 ﬁjl'l‘

Detailed design examples will be presented in subsequent sections.

8.2 STABILITY AND GAIN

Rollette’s stability constant k is important to practical GaAs FET amplifier
design. In terms of device S-parameters, it is expressed as

1_|S:||2_|S:a2|2 II‘ZZ-SllsleZ
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k:

Although one-port unilateral models (as seen in Fig. 8.27) are frequently
used to represent impedance matching requirements, the complete device
representation is nonunilateral. Therefore, at frequencies at which useful
gain is available, the potential for oscillations must be examined. Even for
power amplifier applications, where the device is being operated nonlinear-
ly, small-signal stability should also be considered.

‘I'he significance of Rollette’s stability constant is that for k> 1, the
device is unconditionally stable and no combination of load and source
impedances can produce oscillations. For this case, simultaneous complex
conjugate matching of the FET input and output ports is possible. When this
is done, maximum available gain (MAG) results. The expression for MAG
is given by

MAG—’ l(k Vk*—1)
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If, on the other hand, k <1, some load and source impedances can cause
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oscillations. In such cases, the impedance regions to be avoided can be
plotted or represented graphically by circular regions on the Smith chart.
This method is adequately described in several references [1, 2]; hence, it
will not be repeated here. Often, these difficulties are avoided when lossy
negative feedback or lossy branch amplitude equalization techniques are
employed. The lossy branch technique will be discussed in the two-stage
design example of Section 8.4.4.

8.3 Q-BANDWIDTH LIMITS ON IMPEDANCE MATCH

Before any attempt to design a broadband matching network, the achievable
match performance must first be determined. A common pitfall that the
inexperienced circuit designer often encounters is an attempt to obtain
matching networks blindly by numerical optimization. If the desired perfor-
mance level is not achievable, considerable computer and engineering time
can be wasted. This section addresses the limits imposed on impedance
match performance by load behavior.

The relative reactive to resistive (susceptive to conductive) behavior of
the load immittance sets the limits on achievable broadband performance.
This behavior is sometimes described in terms of a parameter called load-Q.
Bode [3] showed that the integral of return loss is bound by a constant. This
constant is dependent on the behavior of the reflection function. The load
that was initially considered by Bode was a simple parallel RC. In this case,
the match performance limit can be described in terms of load-Q and the
complex frequency location of matching network reflection function zeros.
Several years later, Fano [4] extended Bode’s work to address more general
cases. For our purposes here, a detailed look at Bode’s work will suffice. In
addition to the parallel RC case that Bode considered, we will show that the
circuit-dual (series RL case) also yields the same results. So, all single
reactance absorption lowpass cases are covered. These results can then be
extended to the two-element bandpass cases by the well-known lowpass to
bandpass transformation.

The two cases that will now be considered are illustrated in Fig. 8.2. An
LC matching network that absorbs to complex valued load behavior and
provides an impedance-matched filter response to the R, source is desired.
Matching networks are filter structures. However, a filter that provides a
low reflection match between a resistive source and load is not necessarily a
matching network. The additional requirement that is imposed on matching
networks is reactance absorption at one or both sides of the structure.
Typical filter responses have zero flat-loss (offset) due to reflection zeros on
the imaginary axis. Since matching networks have additional constraints
placed on them, additional degrees of freedom in the realization are
required. General placement of reflection zeros allows this freedom. The
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Figure 8.2 Load representations for match limit analysis.

significance of which half of the complex plane the zeros are placed will
become clear when Eq. (13) is discussed.

The match limit relationships that we seek are obtained by considering
the following contour integral:

og | —
&lp

where the path of integration is the simple closed contour shown in Fig. 8.3.
The reflection function in the above expression is related to the reflection
function in Fig. 8.2 by

das

,_ (S+S)E+S)(———)S+S,)
PP E=—85)S-8)( - -39,

Both functions have identical steady-state magnitude, since they differ only
by an allpass factor. Equation (1) provides a convenient means of account-
ing for any right-half plane (RHP) zeros of p. Since the contour integral
contains the reciprocal of Eq. (1) in the integrand, zeros of p’ represent
poles in the integrand. The allpass factor allows the presence of any RHP
zeros of p to be removed from p’ without changing the steady-state
magnitude characteristic. For each RHP zero of p, S,, A corresponding RHP
pole and LHP zero appear in the allpass function. This integral can be
expressed in two parts, by considering the closed contour in two segments,
as seen in

(1)

1 [ 1
lo|—'ds='flo Hd + | i 10}_’.:15 2
jg gl, I_m 8| 5|2« . og| = (2)

' (Editor’s Note): p and p’ have same steady state magnitude.
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Figure 8.3 Contour integration.

Hence, no RHP poles appear in the integrand. By the Cauchy—Goursat
theorem, the integral is zero. This leads to Eq. (3), or in admittance form

Eq. (4).
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The infinite

radius limits of the load impedance and admittance for the RC

and RL cases are presented in Eqs. (5) and (6), respectively. Similarly, the
infinite radius limit of the allpass factors are presented in Eq. (7).
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By making these limit case substitutions, Egs. (3) and (4) yield Egs. (8) and
(9), respectively. The integral on the right side of both

o 1 ‘f 1 ds
}Uflogp dw = CR, E;:S" S (8)
i Y - [Ba g, 5
j!logp do=| 23,. < (9)
[}

can be evaluated by making a change in variables and performing the
integration in theta at a constant (infinite) radius. This change in variables is
indicated in Eqgs. (10) and (11). The integration in a clockwise direction
around the semicircular contour is then obtained by Eq. (12).

S =rexp(jO®) (10)
ds . ;
—ari2 (
jrexp(i®) . _
7 exp( j0) do j (12)

m

Hence, the results of Eq. (13) are obtained. This is Bode’s limit. We can
clearly see from this that the presence of any RHP reflection zeros will
degrade the match performance. Later, it will be demonstrated that RHP
zeros allow greater reactance absorption at the source side of the matching
network. This zero-placement trade-off is important in the design of inter-
stage matching networks, where reactance absorption at both ports is
important.

( 1 Tr
Jlog Sldeo=cg - W?Si | (13a)
e ik

log|— | dw = —WZS- 13b
f 8|5 R, = (13b)

0

From Eq. (13), it is clear that with LHP zero placement the integral of
return loss is equal to a constant that is inversely proportional to load-Q.
Consider Fig. 8.4. The area under the curve represents the value of the
integral. If load-Q is decreased, the available area is correspondingly
increased; so, the same level of match performance is achievable over a
wider band. It is also true that if the load-Q is unchanged, a reduction in



BROADBAND MATCHING NETWORK DESIGN 389

RETURN

SAME
LOSS LOAD Q
\{// LOWY

FREQUENCY
Figure 8.4 (-Bandwidth trade-off.

desired bandwidth permits an improvement in match performance. These
qualitative observations are intuitive. Equation (13) is important because it
allows a quantitative assessment. Sometimes Bode’s limit is expressed with
the inequality seen in Eq. (14). This result is easily obtained from both
forms of Eq. (13) with LHP zeros and ideal “‘brick wall”” lowpass amplitude
response.

|p| = exp(—=m/Q,) (14)

Clearly, to make use of Eq. (13) or (14), a lumped model that represents
the load impedance behavior is required. Load modeling techniques and the
bandpass equivalent of Eqs. (14) will be detailed in Sections 8.4.3 and
8.4.2.1, respectively.

8.4 BROADBAND MATCHING NETWORK DESIGN

The design of lumped LC impedance matching networks is now considered.
Applicability of the approach to be discussed is wide-ranging, since most
practical applications can be reduced to the problem of obtaining some
desired impedance behavior at one or both sides of a two-port network.

Direct distributed synthesis techniques, such as those using the Richards
transformation and Kuroda identities, will not be considered here. This was
decided for several reasons:

1. Discontinuities are not accounted for in distributed synthesis.

2. Lumped designs can be easily converted to an equivalent distributed
form.

3. Discontinuities can be folded into the design at the lumped-to-distributed
conversion step.



390 GaAs FET AMPLIFIER AND MMIC DESIGN TECHNIQUES

4. Commensurate element designs are virtually always larger and therefore
more lossy and less desirable for monolithic integration.

5. Reactance absorption requires unit elements to be inserted only from one
side of the network.

It is important to note that there are two fundamentally different ways of
addressing the LC matching network problem. One is the more classic filter
synthesis approach, which requires that a load model be available for
absorption into the matching network through the synthesis process. The
other operates directly on the interface impedance requirements without a
model. The material presented here falls into the first category.

The classic filter synthesis approach to broadband impedance matching
network design usually involves four activities:

1. Approximation: a functional representation of the desired response.

Realization: the network synthesis step that satisfies the approxima-
tion and absorbs the load model.

3. Mapping: a frequency domain transformation to the desired pass-
band.

4. Load Model: a one-port formed by an LC two-port that is resistively
terminated.

These four aspects are discussed in the next three subsections.

8.4.1 The Lowpass Prototype

Although most design requirements are for passbands that do not extend
down to dc, the lowpass representation is very useful. Since frequency
domain mappings can be used to extend approximations to other bands, it is
not necessary to address the approximation problem separately for each
type of network to be considered. In some cases, even the completed
network realizations can be transformed directly. The lowpass (LP) to
bandpass (BP) mapping is one such case.

It is clear that an optimum matching network will only provide good
matching inside the desired passband. This is a consequence of the Bode
analysis, since the area under the return-loss frequency response is fixed.
One of several classic approximations can be applied here to achieve an
abrupt transition between passband and stopband. Usually, the phase-
transfer characteristic is not a primary consideration. Cases in which phase
linearity is important can have additional bandwidth margin designed in or
use another approximation, such as the Bessel or Gaussian. Of potential
interest here are the Butterworth, Chebyshev, and elliptic responses. Each
of these has previously been used for matching network design. However,
the Chebyshev (equal-ripple) response is by far the most popular because it
offers superior performance to the Butterworth form and is more easily
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realized than the elliptic form. Consequently, the sensitivity to element
variations also falls between the Butterworth and elliptic cases. This section
will consider the Chebyshev LP approximation and LP prototype synthesis.

The LP prototype network is frequency- and impedance-normalized. The
general Chebyshev amplitude-transfer function is illustrated in Fig. 8.5.
Note that in addition to ripple loss, allowance has been made for nonzero
offset loss (flat loss). This is represented algebraically in Eq. (15) the
expression for insertion loss, where T, is the Nth Chebyshev polynomial of
the first kind:

[IL]> =1+ K? + €’T7(Q) (15)

Since insertion loss in LC ladder networks is due to reflection, the reflection
function p is representable as a function of the desired insertion-loss
response. This relationship is expressed in Eq. (16) and from it Eq. (17)
follows:

2 |1L12*—1
= 16
Kle)s 4+ 12
lpf?= R T T (17)

(1+ K*)/e* + T2

The roots of the numerator and denominator of Eq. (17) allow the reflection
zeros and poles to be determined. In order to represent a realizable
network, the poles are restricted to the LHP. The only restriction placed on
the zeros of reflection is that they must appear in complex conjugate pairs or
on the real axis. Note that reflection zeros may appear in RHP or LHP, and
the same magnitude insertion-loss response may be achieved. The network

L9/
(NORMALIZED FREQ)

Figure 8.5 Chebyshev LP prototype response.
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element values will be affected, since symmetric (with respect to the
imaginary axis) reflection zero shifts result in an interchange in the port Q's.
The S-plane poles and zeros of reflection are represented in Eqs. (18-21),
where i is an integer between 1 and N. The subscript pi or zi is used to
indicate the ith pole or zero, respectively.

8o = —sin[ -7%1—)] sinh[a] = j cos[ 17(_2211%)_] cosh[a] (18)
S, = ﬁsin[%] sinh[b] % j cos[l(zzi—N_Q] cosh|b] (19)
a= % sinh (Y 2K (20)
b=%sinh"1(§) (21)

Equations (20) and (21) provide two constants (a and b) called Fano’s
parameters, which appear in Eqgs. (18) and (19). One should not be
surprised to find that there is a unique combination of response offset (K?)
and ripple (€°) that provides a minimum mismatch loss in passband. This
optimum case is sometimes called the Fano match case. The corresponding
Fano parameter values are given in Figs. 8.6 and 8.7 as a function of LP
prototype load-Q. Our purpose here is to provide a practical means of
designing optimum wideband circuits with a minimum of esoteric complex-
ity. Intentionally, the class of LP loads has been limited to single reactance
cases, since Matthaei’s [5] ‘“‘situation 1’ can thereby be ensured. The reader
should keep in mind that this allows freedom for two-element bandpass
models. The bandpass load modeling technique that will be presented in
Section 8.4.3 provides a means of ensuring that fourth-order models can be
obtained which fall into Matthaei’s “‘situation 17’ category.

The LP prototype network can now be obtained by forming the driving-
point impedance function (22), followed by continued fraction [6] ex-
pansion:

1+ p(S)

(22)

Significantly, Levy [7] combined Matthaei’s “‘situation 1’ results with the
closed-form LP filter equations of Green [8] and Takahasi [9] to obtain
closed-form LP prototype matching network equations. These expressions
are given in Eqs. (23—-26) and represent LHP placement of reflection zeros.
Equation (25) is a recursion relation in which “i” may take on integer
values between 1 and N — 1, for an Nth-order network.
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8 =1 (23)

_ 2sin[@w/(2N)]
&1~ Sinh[a] — sinh[b] (4

4sin[(2i — 1)/(2N)] sin[7(2i + 1) /(2N)]

8i8iv1— sinh’[a] + sinh’[b] + sin’[7i/N] — 2 sinh[a] sinh[b] cos[7i/N]
(25)
2sin[7/(2N)] (26)

EnEN+1 ™ sinh[a] + sinh[b]

At this point, we note that g,g, and gygy,, are load and source (),
respectively. For convenience, they will be denoted Q, and Q. It should be
noted that Eqgs. (24) and (26) can be solved simultaneously for Fano’s a and
b when Q¢ and Q, are both specified. This provides a means of designing
interstage matching networks, as seen in Eqgs. (27) and (28):

a= sinh_l{sin[ 21;-’](Q1L + és)} (27)

b = sinh " '{sin[ 2’;,]( le e QIL)} (28)

From a substitution of Egs. (20) and (21) into Eq. (17), we obtain Eq. (29).
By evaluating this expression at T, =0 and T, =1, expressions for the
minimum and maximum reflection coefficients are obtained for this Nth-
order case. These match limit results, which are seen in Eqgs. (30) and (31),
complement the previously discussed Bode limit.

sinh’[Nb] + T3

lpl"= sinh’[Na] + T2, L
_ sinh[Nb]

|plmin_ Sinh[Na] (30)
_ cosh[Nb]

|p|rnax_ COSh[Nﬂ] (31)

A LOWPASS MATCH EXAMPLE

Before moving on to the more important consequences of the preceding LP
formulation, an example of a LP matching network is in order.

Suppose we wish to obtain a baseband (video) match from dc to 10 MHz
into a parallel load that is comprised of a 1000 pF capacitor and a 31.8 €}
resistor. Use a third-order matching network.
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Match Limits: Q, = (27107)(10 7 F)(31.8 Q) =2.0

Rho,_,. = exp(T") = 0.208
VSWR,,,. = 1.5:1
VSWR,,, = 1.66:1

VSWR, . =1.90:1

Fano Parameters: a = (0.783
b =0.358

LP Prototype: g,=1.0(Q

g, =20F

g, =0.760 H
g,=1.351F
g,=0.602Q

Denormalized LP Prototype: Frequency scale by 27 10’
Impedance scale by 31.8
Hence, the LP matching network shown in Fig. 8.8 is obtained:
(From g,) R, =31.8Q
(From g,) C, = 1000 pF
(From g,) L,=0.385pH
(From g5) C, =677 pF
(From g,) R, =19.120Q

Note that the desired load model was forced. This occurred through the
selection of the Fano parameters and LHP zero placement, which ensured

|
0.385 nH|

I

Rg=19.12 Q R =31.8%

I

|
|
|
= = B =
677.pF | 1000.pF
MATCHING NETWORK | LOAD

Figure 8.8 LP match example.



BROADBAND MATCHING NETWORK DESIGN 397

optimum performance with this load-Q. Unfortunately, the LP matching
procedure does not provide a means of adjusting the source resistance, since
transformers (and transformer equivalent circuits) do not function at dc. The
networks obtained by the frequency transformation in the next section do
not share this limitation.

8.4.2 Mappings

When impedance matching down to dc is not required, as is usually the case,
a number of frequency transformations can be applied to the LP formula-
tion. Three mappings are considered in this section: the bandpass BP, the
degree doubling quasi-lowpass QLP, and the degree doubling quasi-highpass
QHP.

8.4.2.1 Lowpass-to-Bandpass Transformation. Perhaps the most well-
known frequency transformation is the LP to BP. It is illustrated in Fig. 8.9,
and defined in Eq. (32), where S and p are the LP and BP complex
frequencies, respectively. The transform Q, Q., is defined in Eq. (33), with
passband corner frequencies f, and f,.

_ “ . P

S'QT[; * %] (32)
. \‘f?.fl

Or=7 7, (33)

Reflection functions, pole and zero locations, and transfer functions can
all be transformed to BP form with Eq. (32). However, the most surprising
feature of this mapping is that it allows network conversions on an element-
by-element impedance basis! Consider an inductor of LP complex impe-
dance SL. Two impedance terms result when Eq. (32) is applied: (Qrw,L)/
p+ (QrL/w,)p. The first term appears to be a capacitor equal to 1/
(Q,w,L), while the second term behaves as an inductor equal to (QL/w,).

T T

i) 2 li] ?
| | | :
\ | | |
2 ‘S\__,‘ I T T
N oV RN GRS It
_ L1 L1
—(..dz-'u}o—b)-l 0 w‘lwowz ) —

Figure 8.9 LP to BP mapping.
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Hence, a series L.C branch results from a LP inductor. Similarly, a capacitor
of LP complex admittance SC will yield two terms under this mapping. The
first will appear as an inductor equal to 1/(Q,®,C). In parallel with this
inductor is a capacitor equal to (Q C/w,), contributed by the second
susceptance term. So, LP capacitors map into parallel LC branches. The
inductors in the series resonators and the capacitors in the parallel re-
sonators are obtained numerically by frequency scaling the corresponding
LP prototype elements by the desired bandwidth, in radian frequency. The
associated branch element is obtained by setting the resonance at midband
(geometric center). Figure 8.10 illustrates the possible LP prototype to BP
network relationships.
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Figure 8.10 LP prototype to BP elements.
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Since the requirements (of O, and impedance level) present at the load
side of the bandpass network necessary to force the desired load model
usually do not provide the desired source resistance, additional transformer
action is needed. Clearly, it can now be seen that broadband matching is
comprised of two distinct actions: reactance absorption and impedance
transformation. Usually, both are required for a complete impedance
match. The need for transformers is satisfied by Norton [10] subcircuits,
discussed next.

The Norton transformer subnetworks are comprised of an ideal trans-
former cascaded with a pair of series- and shunt-connected inductors or
capacitors. Figure 8.11 illustrates the subnetworks that will be considered.
They are realized with equivalent “T"’ or “*pi1’’ structures. The ““T"’ equival-
ents are obtained by coefficient matching Z-parameter representations.
Similarly, coefficient matching in Y-parameter form yields the pi1 structures.
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— e — ——

L
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BY N~2
AT Y
&
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N2 {CN
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d) % an+1 N2
(25)

SUBNET (d)

Figure 8.11 Norton transformer subnetworks.
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Figure 8.12 Norton transformer equivalents.

These equivalences are represented in Fig. 8.12. These are frequency-

invariant representations. So,
the “‘J”” or “K”’ inverters, whic
bandwidth filter designs.

The limit to the available

they are truly broadband-equivalents, unlike
h are sometimes used in narrow and moderate

transformer action must be considered. The

maximum effective turns ratio is given by Egs. (34) and (35). Attempts to

go beyond this limit will result
circuits.

in negative elements in the T or pi equivalent

Cs €
Niian ™= LC—P (34)
S
Lo L
N e = (35)

Ly
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Since contiguous LP prototype elements yield pairs of inductors and
capacitors in the BP network, it is useful to relate N, to the relevant LP
prototype elements ( g;g,,,). This is expressed in

Nmax o ]‘ + Q%g:’gi-‘—l (36)

If one is willing to sacrifice some match performance in order to minimize
the required number of network elements, Eq. (36) can be used. It is
possible, by deviating from the Fano solution, to obtain adjacent LP
prototype elements ( g;g,.,) that simultaneously allow the necessary react-
ance absorption (g,) and provide precisely the required N, ,, to complete
the design. These bandpass forms are called minimum element [11] BP
matching networks and are obtained by combining computer-aided synthesis
with nonlinear programming.

Several practical BP matching network examples will be presented in
Section 8.4.4.

8.4.2.2 Lowpass-to-Quasi-lowpass Transformation. Since practical mi-
crowave designs must behave as BP structures, it is natural also to seek LP
or highpass (HP) configurations which behave as “‘pseudobandpass’ struc-
tures. The HP and LP network forms of these pseudobandpass structures
are often called quasi-highpass (QHP) and quasi-lowpass (QLP) networks.
Varieties of frequency-variable transformations that address this need are
available in the literature. Some provide the same network order in the
transformed variable as in the LP domain, as in the work done by Christian
and Eisenmann [12]. Perhaps the most well-known degree doubling QLP
transformation was used by Matthaei [13] to form Chebyshev transformer
networks. This work was later extended by Cottee and Joines [14] to permit
prescribed reactance absorption, by allowing nonzero offset (flat-loss) in the
response. The Butterworth QLP response approximation has also employed
[15].

The QLP mapping will be considered in this section. It is illustrated in
Fig. 8.13, and defined in Eq. (37), where § and p are the LP and QLP

Figure 8.13 LP to QLP mapping.
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complex frequencies, respectively. The band corner frequencies are f,
and f,.

ekl g g
S = J'(PA @) (37)
where
w§+m2, w:— w;
Wo= =Ry A=,
w, = 2/ and w, = 2/,
* B¥hC S

Reflection functions, pole and zero locations, and transfer functions can all
be transformed to QLP form with Eq. (37). However, unlike BP mapping,
network conversion on an element-by-element impedance basis is unsuccess-
ful. Synthesis of this type of network can be accomplished by mapping LP
reflection poles and zeros into QLP roots. The QLP reflection function can
then be formed by expansion of the pole and zero factors. By Eq. (22), the
driving-point impedance function can then be formed. Finally, the network
is obtained from Egq. (22) by continued fractions. Denormalization is
performed with respect to the low impedance port impedance and the
arithmetic mean frequency, (f, + f,)/2.

In the QLP synthesis procedure, just described, there was no step
comparable to the Norton transformer insertion seen in BP design. How is
the impedance transformation specified? The answer can be seen in Fig.
8.13, when the dc insertion loss is considered. Since, at dc, the resistive
terminations are connected directly, the source-to-load impedance trans-
formation can be controlled by adjusting the mismatch loss there. In so
doing, a degree of freedom is lost. The response offset (flat loss) cannot be
specified independently of the response ripple. As in Matthaei’s case, with
zero offset, a unique ripple solution was specified. As with Cottee and
Joines, ripple and offset were constrained together uniquely to meet the
design requirements. The linking relationship is given in Eq. (38), where 7 is
the desired transformation ratio and N is the desired QLP network order:

2_[(7*1)2 2] 2{ —1[‘“:2:]}
€ =" K™ |/cosh™{ 2N cosh X (38)
Nonzero offset is a result of reflection zeros that are not on the imaginary
axis. This raises the issue of optimum placement (RHP or LHP) of the
zeros. With this type of network, LHP zero placement provides maximum
reactance at the low impedance (normalized) port. Similarly, RHP zero
placement provides maximum reactance absorption at the high impedance
port. In order to determine the match performance and necessary offset,
Figs. 8.14-8.18 are provided. In each case, as a function of desired
transformation ratio, several families of curves that are indexed by network
order N and normalized bandwidth W are plotted. The vertical axis indicates
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Figure 8.15 QLP reactance absorption, Q = 2.



404 GaAs FET AMPLIFIER AND MMIC DESIGN TECHNIQUES

VSWR 0.3,2 0.2,2

0.5.4

0.1,2

0.6,6

>-< 0-4.4
0.5,6

1046

0.3,6

0.2.6
% ~0.3.4

)

Figure 8.16 QLP reactance absorption, O = 3.
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Figure 8.17 QLP reactance absorption, Q = 4.
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Figure 8.18 QLP reactance absorption, Q =5.

the match performance. The normalized bandwidth is defined by

W= Z(fz_fz) (39)

L+ h

A QUASI-LOWPASS MATCH EXAMPLE

Before moving on to QHP design, a QLP example is in order.

Suppose we wish to obtain an octave band match from 4 GHz to 8 GHz
into a series load that is comprised of a 0.132 nH inductor and a 2.0 (}
resistor. Use a sixth-order matching network. A 50 () source is given. So,
r =125.

276)(10°)(0.132 nH)(10 °
Match Limits: QOLP:( T )(2 0Q = ;

Ogode = (QQLP)(W) =(2.5)(0.667) = 1.667

=2.5

- T

Piode = exp(m) = (0.152
VSWR,, 4. = 1.34:1
VSWR,_ . =1.7:1 (from Figs. 8.15 and 8.16)
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Response Parameters: Offset =0.19 dB
Ripple=0.13 dB

Fano Parameters: a = (0.818

b =0.339

LP Poles: S,, = —0.912815+ 0
S, = —0.456408 + j 1.172571
S, ;= —0.456408 — j 1.172571
LP Zeros: S,, = —0.351723+j 0
S,,= —0.172586 + j 0.916165

S,,= —0.172586 — j 0.916165

QLP Poles: p,,, py, = —0.279045 = j 1.090402
Pz Pps = —0.110227 = j 1.380208
Ppss Pga= —0.243953 x j 0.623627

QLP Zeros: P,,, p;, = —0.108579 = j 1.059670
P,,, p;,=—0.043817 = j 1.312939
P,y, piy= —0.080805 = j 0.711944

_ p°+0.4664p° +3.4421p" + 1.0960p> + 3.5131p” + 0.5599p + 1.0053
p°®+1.2665p> + 4.1353p* + 3.3118p” + 4.5699p> + 1.7900p + 1.0891

Zap  2p°+1.7329p° + 7.5774p" + 4.4079p" + 8.0830p" + 2.3500p + 2.0944

R, 0.800p° + 0.6932p"* +2.2160p> + 1.057p” + 1.2300p + 0.08378

QLP Prototype: g, = 1.0
g,=2.5H
8, =0.3925F
g.=8.1518 H
g,=0.1486 F
gs=17.3982 H
g.=0.04617 F
g, =25.00 Q)

p

Denormalized QLP Prototype: Frequency scale by 276(10%)
Impedance scale by 2.0
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REFLECTION ZERQ PLACEMENT: LHP, LHP, LHP

BANDWIDTH = 66.66 %

LOWER STOPBAND LOSS = 82994 dB

OFFSET = 0.192 dB, RIPPLES = 0.128 dB
PASSBAND MAXIMUM LOSS = 0.3192 dB
PASSBAND VSWR (RIPPLE + OFFSET) = 1.725 : 1

QUASI-LOWPASS MATCH

2 Ohm

0.132 NANO-HENRY
5.206 PICO-FARAD
0.432 NANO-HENRY
1.971 PICO-FARAD
0.923 NANO-HENRY
0.612 PICO-FARAD
50 Ohm

norororx

NORMALIZATION =
50 Ohms - Z,)y PLOT

IMPEDANCE CHART

VSWR

0.132nH 0.432nH 0.923nH

292 I I I 5052
5.206 1.971 0.612
pF pF pF
INPUT VOLTAGE

STANDING WAVE RATIO

3.0:1

2.8:1—

2.4:1—

2.0: 1

1.2:1

1:1 l ' |

4000 5000 6.000 7.000 8.000
FREQUENCY (GHz)

Figure 8.19 QLP match example: LHP zeros.

Hence, the QLP matching network shown in Fig. 8.19 is obtained:

(From g,)
(From g,)
(From g,)
(From g5)
(From g,)
(From gs)
(From g,)
(From g,)

R, =2.000 Q

L, =0.132nH
C, =5.206 pF
L, =0.432nH
C, =1.971 pF
L, =0.932nH
C, =0.612 pF
R, =50.00 Q
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REFLECTION ZERO PLACEMENT: RHP, RHP, RHP

BANDWIDTH = 66.66 %

LOWER STOPBAND LOSS = 8.2994 dB

OFFSET = 0.192 dB, RIPPLES = 0.128dB
PASSBAND MAXIMUM LOSS = 0.3192 dB
PASSBAND VSWR (RIPPLE + OFFSET) = 1.725 : 1

QUASI-LOWPASS MATCH

0.061nH 0.197nH 0.52nH

R =2 Ohm

L = 0.061 NANO-HENRY

C =9.23 PICO-FARAD 20 I ]: I 5052
L =0.197 NANO-HENRY

C =4.324 PICO-FARAD = = = i 1

L =052 NANO-HENRY 9.23pF 4.324 1.326

C =1.326 PICO-FARAD pF pF

R =50 Ohm

NORMALIZATION =

INPUT VOLTAGE
STANDING WAVE RATIO

1.2:1}-

1.1 =4 | |

4000 5000 6000 7000 8000
1.0 FREQUENCY (GHz)

IMPEDANCE CHART
Figure 8.20 QOLP match example: RHP zeros.

Note that the desired load model was forced. This occurred through the
selection of the Fano parameters and LHP zero placement. If all reflection
zeros are symmetrically moved to the RHP, the QLP network in Fig. 8.20 is
obtained. Note that the mismatch magnitude performance is identical, but
the input port capacitor has doubled and the output port inductor has
correspondingly reduced in size! For comparison, consider the Matthaei
zero offset QLP network, which results from the same requirements except
for prescribed reactance absorption. This case, shown in Fig. 8.21, results
when reflection zeros are placed on the imaginary axis. Note that the size of
the reactive elements at each port falls between the RHP and LHP cases.

8.4.2.3 Lowpass to Quasi-Highpass Transformation. A pseudobandpass al-
ternative to the QLP is the quasi-highpass (QHP) network. Since realization
of QHP designs is quite similar to that of the QLP, this section will be brief.
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BANDWIDTH = 66.66 %

LOWER STOPBAND LOSS = 8.2994 dB
PASSBAND RIPPLE LOSS = 0.1347 dB
PASSBAND RIPPLE VSWR = 1.423:1

-LOWP
QUASI-LOWPASS MATCH 0.084nH 0.29nH 0.742 nH

R=2 Ohm
L = 0.084 NANO-HENRY
C =742 PICO-FARAD 20 5082
L =0.29 NANO-HENRY ]: ]: ]:
cC=29 PICO-FARAD = = = —
L =0.742 NANO-HENRY 7.42 pF 2.9pF 0.849pF
C =0.849 PICO-FARAD
R =50 Ohm
NORMALIZATION = INPUT VOLTAGE
50 Ohms - Z| PLOT STANDING WAVE RATIO
3.0:1
2.8:1—
2.4:1—
o
% 201
>
1.6:1+
1.2:1

1:1 I l l
4.000 5.000 6.000 7.000 8.000
FREQUENCY (GHz)

iMPEDANbE CHART
Figure 8.21 QLP match example: no offset.

The QHP mapping to be considered in this section is illustrated in Fig.
22, and defined in Eq. (40), where S and p are the LP and QHP complex
frequencies, respectively. The band corner frequencies are f; and f,.

S=—'[——(“’1“’2)2 + ﬂl} | (40)
J‘ APZ A
w:+ o} (0’ — w})
where m§=—2—b, A:——z-—i“,
w, = 2/, and w, = 2
¢ f2+fl ’ ’ f2+fl

Like Eq. (37), Eq. (40) does not allow network conversion on an element-
by-element impedance basis. However, element-by-element conversion
from QLP to QHP can be accomplished with Eq. (41), where P and § are
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! f

|2

Figure 8.22 LP to OHP mapping.

the QLP and OHP complex frequencies, respectively. Synthesis of this type
of network can be accomplished in a manner identical to that of the QLP.

W, W,

Pty (41)

where w, =27f, , and w, =27f, .

8.4.3 One-port Load Modeling

The unilateral FET model, previously discussed in Section 8.2, represents an
embodiment of two simple one-port impedance models. It is well known
that intrinsic device impedance behavior can be accurately represented in
this manner. However, when feedback or lossy branch gain equalization is
employed, a single RC section is an inadequate representation. Sometimes
nonunilateral behavior can be strong enough to require a more sophisticated
model. Recently, Mellor [16] has derived closed-form expressions for
second-order LP and HP one-port impedance models. Second- and fourth-
order closed-form BP models have been used successfully by this author [17]
for many years. This modeling technique will now be discussed. When the
occasional need arises for higher-order models, this method can be easily
extended to cover those cases.

In order to provide a form that is compatible with the subsequent
synthesis step, all one-port models are required to be two-port LC networks
that are resistively terminated. The two topologies that will be considered
are illustrated in Fig. 8.23. Each reactance or susceptance block is allowed
up to second-order behavior. So, fourth-order models can thereby be
realized. To avoid Matthaei’s “‘situation 2,” the innermost branch of the
model must provide the dominant behavior. The outermost branch provides
a perturbational contribution. Therefore, the two forms to be considered
can be seen in Fig. 8.24.

() ——=
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— X(s)

ZMODEL

B(s)

ZSL..

(a) SERIES BEHAVIOR WITH SHUNT PERTURBATION

X(s)

,

ZMODEL

B(s) § RL
|

Zs e
(b) SHUNT BEHAVIOR WITH SERIES PERTURBATION
Figure 8.23 One-port model topologies.
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(b) SHUNT BEHAVIOR WITH SERIES PERTURBATION
Figure 8.24 Fourth-order models.
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The LC values in the second-order subsections can be determined from
the reactance (series case) or susceptance levels at the band corners, f, and
f,. These calculations, which result from simultaneously solving two equa-
tions in two unknowns, are given in Egs. (42-45). The reactance and
susceptance levels at f, and f, are X, X,, B, and B,, respectively.

szz_f1X1
L.= 5 ~ 42
= 2a(f1-12) W
i Fo—1
Cs= 2 2 43
ST 2 (f 1K~ X)) il
L,= 2f2_f1 . (44)
277(f1f232_f1f231)
L= szz_le1 (45)

P 2a(fi-fD)

The fourth-order models seen in Fig. 8.24 are obtained by a decomposition
into second-order subnetworks and solution of Eqs. (42-45). To see this
decomposition, consider Fig. 8.25. The closed-form solution for the react-
ance and susceptance shifts (X,, X,, B,, and B,) are given in Egs. (46-53).
Since the end points of the locus are fixed, the value of the terminal
resistance adjusts the amount of curvature. For series-dominant behavior,
R, is usually set to the lowest value that is encountered in the real part of
the data to be modeled. Similarly, shunt-dominant behavior usually requires
R, to be set to the largest value encountered in the real part of the data to
be modeled.

Shunt with Series Perturbation

- A\/[RLI;RA —1] -

R
X1=XA+ARA\/R il | (47)

A

B\/[RI_/RB _ 1]

B,= R (48)
RL
X,= X, + BRy (49)
R, -1
where Z(f,)=R, +jX,, Z(F,)= Ry +jX;,
A= +1 if Imag{Z,(f,)} =0, A= —1if Imag{Z,(f,)} >0,

B = +1 if Imag{Z,(f,)} =0, and B=—1if Imag{Z,(f,)} >0.
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IMPEDANCE COORDINATES

Figure 8.25 Impedance data to be modeled.

Series with Shunt Perturbation

R,(1+ Q3
X, = ARL\/—IEI _1Q ) (50)
2 - 2
g — AVIR,(1+Q}/R, —1] Qi -

‘ R,(1+Q?) CX,(1+ Q)
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* Ry(1+ Q3)
X, = BRL\/ R, —1 (52)
By B[R (1 YO)/R - 9F 53
Ry;(1+ Q53) X;(1+ Q3)
where Z(f)=R, +jX,, Z(f) =Ry +jXy,
Xl Ix,l
Ql RA ) Q, RB .
A= —1Iif Imag{Z,(f,)} =0, A=+11if Imag{Z,(f,)} >0,

B = —1 if Imag{Zs(f,)} =0, and B= — + 1 if Imag{Z.(f,)} >0.

A LOAD MODEL EXAMPLE

As a numerical example, we will model the following data with a fourth-
order model:

Frequency (GHz) Vy PR X oad

1.00 4.0 —4.0
1.35 3.0 0.0
1.65 3.5 3.0
2.00 6.0 7.0

As seen in Fig. 8.25, the behavior to be modeled is predominantly series-
resonant. So, we choose the series model with the shunt perturbation. Since
the minimum value seen in the real part of the data is 3.0, we set
R, =3.00Q. From Egs. (50-53), we obtain

X, = —3.873
B, = —0.0364
X,=5.788
B, =0.0538

The LC element values within the model are then obtained from Eqgs.
(42-45). The model and modeled results can be seen in Fig. 8.26.
8.4.4 A Two-stage Power Amplifier Design Example

In this section, we will put to use the circuit design procedures that have
been detailed in the previous sections of this chapter. As an illustrative
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NORMALIZATION = 0.820 17.40
10 Ohms - Z |y PLOT nH \F:F
Tvvv 3|
ZL ] ‘[ 1%.39
1.88 7.642
nH pF
1000 4.04 -4.16
1100 3.40 -2.57
) 1200 3.11 -1.35
IMPEDANCE CHART 1300 3.00 -0.32
1400 3.02 0.62
1500 3.15 1.52
1600 3.37 2.43
1700 3.72 3.38
1800 4.21 4.42
1900 492 5.58
2000 593 6.89

Figure 8.26 Load model example results.

vehicle, we will design a two-stage 5 W amplifier for operation between 8
and 12 GHz. Therefore, three matching network designs are required. The
FET model that will serve as a basis for this example i1s the Hughes
TRC-4080. This is an X-band geometry with a gate length of 0.8 wm. The
large-signal unilateral model for a total gate width of 1 mm is given in Fig.
8.27. Similarly, a 330 wm driver device model is shown as a 3:1 impedance
scaling.

The output port impedance behavior of this model represents the com-
plex conjugate of the optimum power load, rather than the FET source
impedance strictly. This is because the optimum power match impedance

CIN
—| I L]
I -5
Rin gm Rout Cour

1000 2.4 1.28 0.073 54, 0.34

330 7.2 0.427 0.024 165. 0.114
Figure 8.27 FET one-port impedance models.
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requirements differ from small-signal reflection match requirements. When
a network is designed to provide an impedance match with this model, that
network will also provide an optimum power load for the FET. From this
example, it should now be apparent that any desired impedance behavior
can be approximated by modeling its complex conjugate and designing a
matching network to interface with that model.

The first step in this example is to make an assessment of the device Q’s
and corresponding match performance in the 8-12 GHz band. Fano net-
works are used in this example; thus, midband is the geometric center.

f,=V(8 GHz)(12 GHz) =9.798 GHz (64)
9.798 GHz B
Or= 15 GHz —S Gz = 2.44949 (55)
1
O = (279.798)(10°)(1.28)(10 *)(2.4) SR £25)
Qo = (279.798)(10°)(0.34)(10 '*)(54) =1.1635 (57)

From these (’s we can calculate the Bode match limits. To do this, the
bandpass O must transformed into its equivalent LP Q with Eq. (58):

Q
Qp= Q— (58)
— 72.4495 )
!p‘Budc-in_exp(m—) =(.233 (59)
3 —w2.4495) N
|PlBode-ou = eXp( T35, =0.0013 (60)

Clearly, the output match performance appears to be quite good. From
(59), the input performance does not look attractive. However, since
microwave FET devices exhibit —6 dB/octave roll-off in |S,,| with increas-
ing frequency, some form of amplitude equalization is required. This could
be achieved by feedback, lossy branch compensation, or controlled mis-
match. For superior power amplifier performance, feedback and controlled
mismatch are rejected due to output power loss and high reflection,
respectively. Lossy compensation of the input port can most conveniently be
applied with a shunt RLC branch. The excess available device gain at lower
frequencies can be compensated for by applying the proper LC reactance
slope. From gain-bandwidth considerations (Bode), we should not be sur-
prised to find that the resultant gain compensated match performance has
improved. Another way of looking at this is as a frequency tailored input
“*de-Qing.”” Figure 8.28 shows the compensated input models. When these
one ports are reflection-matched, a properly gain-compensated amplifier will
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Lin I Cin
& AAA i
Fiﬂ |
|
o i W >
|

T o '

° 4 + @ &

COMPENSATION | FET REQUIRED MODEL FORM
GATEWIDTH| HINl CIN | LIN ] FIO[ Lﬂ | CGI l.-| l Cp l Lp | Cs [ LS | RL
1000 MICRON | 2.45: | 1.28pF 0.137nH | 2152 | 025nH | 3 OpF| -0.0516nH |0.251pF 0.274nH | 1.597pF | 0167nH | 2.85112
330 MICRON | 7.251 |0.427pF | 0.412nH | B541 | 0.75nH 1.0pF| -0.1549nH |[0.0843pF |0.822nH |0.523pF | 0.501nH 8.55101

Figure 8.28 Lossy branch compensation input models.

result. For matching network design by the techniques already discussed,
these compensated input ports must be remodeled into a proper form: an
LC two-port that is terminated with a single resistor. These alternative
representations are also illustrated in Fig. 8.28. As a result, the input BP Q
is 3.588. The corresponding Bode match reflection limit is now 0.117.

The input, interstage, and output matching networks can now be de-
signed. A sixth-order network (including the model absorbed) will be used
at the amplifier input. At the interstage, an eight-order model is needed.
And due to the relatively low-output Q, only a fourth-order output match-
ing network is required.

Input Match

N=6
O, ..a=3.588
a=0.882
b=0.313

VSWRg 4. =1.27:1
VSWR,_ ., =1.53:1
VSWR ;. =1.37:1

g,=1.0

g, = 1.465
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g, = 0.890
g, = 1.036
g, =0.733

The bandpass transformed input matching network is depicted in Fig.
8.29a. An inductive Norton transformer is then inserted to obtain the 50 ()
input port (Fig. 8.29b). Input match performance is shown in Fig. 8.29c.

Interstage Match

N=8

QSource = 1 . 164

O oaa = 3.588
a=0.928
b=0.521

VSWR,, = 1.50:1

VSWR,_ . =1.48:1
g,=1.0
g, = 1.465
g, =0.867
g,=1.617
g,=0.317

gs = 1.497



BROADBAND MATCHING NETWORK DESIGN

0.352 0.749 |
F +0.155 nH ! -0.155 nH  0.498 nH 0.529 pF

= 4058 DF = T = =
0.0691 nH 0.084 pF 0.822 nH

EXTERNAL MATCHING NETWORK GAIN-COMPENSATED-

| DEVICE MODEL
a) BP TRANSFORMED INPUT MATCHING NETWORK/MODEL

1.509 nH 0.153nH 0.0811nH 0412 nH _
0.175 pF
50 2 5
2 d
0947 0143 4 pF
pF nH N T

b) COMPLETED INPUT NETWORK, AFTER NORTON
TRANSFORMER INSERTION

NORMALIZATION = 50 Ohms - Z, PLOT

F START, F STOP
8 GHz
12 GHz

IMPEDANCE CHART
c) INPUT MATCH PERFORMANCE

Figure 8.29 Input matching network.
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| 0.167 1.597
0.183 nH 1.438 pF +0.0156 | -0.0156 nH pF

0251 0.274 N

4.429 0.0595 11.852 0.0237

pF nH pF nH pF nH
EXTERNAL MATCHING GAIN-COMPENSATED-
NETWORK DEVICE MODEL

a) BP TRANSFORMED INTERSTAGE MATCHING NETWORK/MODEL

1.282 0.142
1.123nH nH pF 0.164 nH 0.137 nH

sy SRt

1.177 nH 1.1708 0.0753 30 PF
pF nH ;[

b) COMPLETED INTERSTAGE NETWORK, AFTER NORTON
TRANSFORMER INSERTION

NORMALIZATION = 165 Ohms - Z;jy PLOT

F START, F STOP
8 GHz
12 GHz

IMPEDANCE CHART
c) INTERSTAGE MATCH PERFORMANCE

Figure 8.30 Interstage matching network.
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The bandpass transformed interstage matching network is illustrated in
Fig. 8.30a. Two inductive Norton transformers are then inserted to obtain
the 165 Q and 0.114 pF source (FET drain) model (Fig. 8.30b). Interstage
match performance is shown in Fig. 8.30c. This represents the power match
provided to the driver stage, since a large-signal output model was used.

Output Match
N=4
Ocource = 1.164
a=0.928
b =0.521
VSWRg, 4. = 1.00:1
VSWR, .. =1.11:1

VSWR,_. =1.03:1

8, =1.0

g, = 0.475
g, =0.388
g, =1.107

The bandpass transformed output matching network is illustrated in Fig.
8.31a. Since the topology here is dictated by the necessity of a parallel
device model, the only available Norton transformation is downward (with
this N =4 case). Upward transformation is desired; so, the order could be
increased to N = 6. Since the external load is 50 () to within a VSWR of
1.03:1, no Norton will be used. The power match provided by this circuit is
can be seen in Fig. 8.31b.

The overall two-stage amplifier circuit and response are shown in Fig.
8.32. We have systematically and optimally obtained this design. It is
important to note that no numerical optimization was used with this
procedure. Monolithic realization of this lumped design is straightforward
with quasi-lumped or distributed elements. The conversion of lumped
designs into MMIC-compatible form is discussed in the next section.
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0.833 nH 0.317 pF
—e

5052

2

0.754 nH
a) OUTPUT MATCHING NETWORK

NORMALIZATION = 50 Ohms - Z;p PLOT

F START, FSTOP:
8 GHz
12 GHz

IMPEDANCE CHART
b) OUTPUT MATCH PERFORMANCE
Figure 8.31 Output matching network.

8.5 MMIC CIRCUIT ELEMENTS

This section addresses the realization of passive circuit elements in a
monolithically integrated form. We will begin this discussion with a bold
statement: ‘‘Ideal lumped elements do not exist!” Distributed effects are
always present. “‘Lumped” inductors and capacitors will always self-resonate
at some frequency. Similarly, reactive effects can always be found in
resistors. A key to achieving good equivalent lumped-element performance
is small element size compared with the operating wavelength.

8.5.1 Transmission-line Element Approximations

A short segment of transmission line can be used to approximate an
inductor or capacitor, depending on its characteristic impedance and how it
is used (interconnection topology). For purposes here, we will consider
lossless quasi-TEM line representations. Lossy lines can easily be substi-
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tuted. The quasi-TEM assumption is good, since microstrip lines are by far
the preferred media for MMICs. On an incremental basis, the characteristic
impedance Z, of the line is given by

Zy= \/% (61)

In Eq. (61), L and C are the incremental series inductance and shunt
capacitance per unit length, respectively. The higher the characteristic
impedance, the more series inductance and less shunt capacitance per unit
length are seen. Lumped inductor behavior can be approximated if a
sufficiently large Z, is used. Alternatively, from low Z, lines, lumped
approximations for capacitors can be obtained. The conversion relationships
are obtained by coefficient matching Y- or Z-parameter representations of
transmission-line segments with those of third-order lowpass LC models.
The equivalent forms are depicted in Fig. 8.33. Clearly, a series inductor is
represented by the pi-section of Fig. 8.33a. In a similar manner, a short-
circuited shunt stub can be used to approximate a shunt inductor. The T
section of Fig. 8.3b allows a practical shunt capacitor approximation. Series
capacitors are a bit more difficult where microstrip lines are used. However,
the “lumped”-overlay-type capacitor can be modeled quite well with this

20, ¢ L

LUMPED INDUCTOR TRANSMISSION LINE EQUIVALENT CIRCUIT

_ - 20 SIN (6)

27t

_Tan (6/2)

€= "2mz0

a). TRANSMISSION LINE INDUCTOR APPROXIMATION

20, 8 .
—1— <= Y By i
—d o
A C
I° il
LUMPED CAPACITOR TRANSMISSION LINE EQUIVALENT CIRCUIT

_SIN ()
"~ 2mfZp

L= Zp Tan (8/2)

2nf

C

b). TRANSMISSION LINE CAPACITOR APPROXIMATION

Figure 8.33 Transmission-line equivalents for lumped elements.
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method, as will be discussed in the next section. Microstrip lines offer
characteristic impedances between 15 and 100 Q on 75-100 pm GaAs
substrates. Good lumped equivalent performance can be obtained when
transmission-line length is less than 30°.

8.5.2 Lumped Capacitors

Monolithic circuit realization of lumped capacitors is commonly fabricated
with several geometries. The most often used form is called the “overlay.”
To a much lesser extent, the so-called ‘“‘interdigitated” geometry is em-
ployed. Most contemporary designs use the overlay exclusively, since it
offers a lower shunt parasitic capacitance, a much wider range of practical
realizations, and more compact size. Therefore, our discussion will be
directed to this geometry. For more information about interdigital
capacitors, see Alley [18] and Esfandiari [19]. When either of the capacitor
forms is used as a series of dc blocking elements, a parasitic shunt
capacitance is also seen. This is due to the electric field path through the
GaAs substrate. Of course, if one side of the capacitor is to be grounded,
then this additional capacitance can easily be included into the capacitor
design.

Overlay capacitors are fabricated by depositing a thin-film dielectric layer
between thin-film metal plates. This is illustrated in Fig. 8.34. Typical
dielectric layer thicknesses are between 0.2 and 0.25 pm. Common dielectric
materials are silicon nitride (Si;N,), silicon dioxide (SiO,), and tantalum
pentoxide (Ta,0;). When SiO, or Ta20; is used, the result is sometimes
called a metal-oxide—metal (MOM) capacitor. Dielectric constant prop-
erties are as follows:

Material Dielectric Constant Temperature Coefficient
Si;N, 67 25-35
Si0, 4-5 100-500
Ta,Oq 20-25 0-200

High-quality MMIC capacitors must exhibit low microwave energy loss,
high breakdown field capability, capacitance stability with temperature, and
good film integrity (low pinhole density and stability). Clearly, the dielectric
film plays a central role in determining the performance in each of these
categories.

Conductor losses are also important in determining the microwave Q-
factor. This can be seen in the overlay capacitor models of Fig. 8.35.

Two modes must be allowed, since the overlay structure is suspended
over a second dielectric layer (the GaAs substrate). The odd-mode charac-
teristic impedance is equivalent to that of a microstrip line of the same width
and half the dielectric thickness as the capacitor. The even-mode charac-
teristic impedance is set by the capacitance of the microstrip mode through
the GaAs substrate. When the coupled line model of Fig. 8.35a is converted
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Figure 8.34 Scanning electron micrograph (SEM) of MMIC overlay capacitor.

Fig. 8.35a is converted into a lumped approximation, the model forms of
Fig. 8.35b and c are obtained. The transmission-line representation method
which was discussed in Section 8.5.1 is applicable here if lossy lines are used.
The applicable equations are

C, = C; — Parallel plate substrate capacitance

sin(@)/(wZ,,) — sin(@)/(wZ,, )

C, = .
. sin(®)
&= wZ,,
Z,, tan(®/2
LS — 0o i:}( )
Z,, tan(®/2
RS = 0o Sn( )
— 2 ZUU Qodd
g sin(®)

It is interesting to note that accurate modeling of “lumped’ capacitors has
necessitated a distributed model.
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||}—0
|||—a

c). SIMPLIFIED LUMPED EQUIVALENT MODEL
Figure 8.35 Circuit models for MMIC overlay capacitors.

8.5.3 Lumped Inductors

When relatively large inductance values are required, uncoupled transmis-
sion lines of the form described in Section 8.5.1 are not always useful. This
limitation is set by the maximum practical realizable microstrip characteristic
impedance. The rectangular spiral configuration shown in Fig. 8.36a offers a
means of exceeding the uncoupled-line inductance limit. Additionally, more
efficient utilization of MMIC surface area results, when compared with
meander-line or S-line (‘‘uncoupled’) configurations. The notation for the
present discussion is also indicated in Fig. 8.36a. The horizontal lines are
labeled H, and the vertical lines labeled V..

Two modeling approaches for rectangular spiral inductors will now be
discussed. The modified Grover [20] method used by Greenhouse [21] is
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H1
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b). GREENHOUSE/GROVER MODEL
Figure 8.36 Rectangular spiral inductor circuit models.
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c}. LUMPED EQUIVALENT REPRESENTATION OF TRANSMISSION LINE MODEL FOR
RECTANGULAR ""SPIRAL"

Figure 8.36 continued

illustrated in Fig. 8.36b. Only magnetic interactions are considered in this
model. Ground-plane effects are equivalently represented by an antiphased
image, separated by a distance of twice the ground-plane spacing. The total
inductance is equal to the sum of the segment self-inductances added to the
sum of the mutual inductive contributions. These effects are shown separ-
ately in Fig. 8.36b for each inductor segment. For MMIC applications, the
self-inductances are approximately given by

2 b
L (uH) = o.ooza[ln(—bﬁ) +0.5005 + ?5] (62)
where a = length and b = width of the line segment in centimeters. The
mutual inductance between two segments is approximated by

a a’ N\ d
where d = distance between centers. The mutual inductive contribution to
each segment is due to the summation over all parallel-line segments. This
includes all image-line segment contributions. More details about this
method can be found in Greenhouse [21]. Good results can be obtained for
moderate-to-small rectangular spirals, since the current in each line segment
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Figure 8.37 SEM of an MMIC spiral inductor.

is approximately the same and near-resonance effects (due to distributed
capacitance) are minimal.

For large rectangular spiral inductors, where phase shift between line
segments become significant, coupled transmission lines provide a more
accurate model. Similar to the application of transmission-line (T) equival-
ent circuits from Section 8.5.1 to overlay capacitors in Section 8.5.2, pi
equivalent circuits can be used to model the coupled-line segments. This
approach can be seen in Fig. 8.36c. The adjacent even-mode impedance and
line-segment lengths are used to determine the series inductance and
even-mode shunt capacitance for each segment. This can be done with the
equations of Fig. 8.33a. Losses can be represented by the series resistance in
each segment. The coupling capacitances are then determined by calculating
half the difference between the odd-mode and even-mode shunt capaci-
tance.

A scanning electron micrograph of an MMIC rectangular spiral inductor
is shown in Fig. 8.37.

8.5.4 Lumped Resistors

The thin-film monolithic resistor is realized either by isolating a substrate
region that carries a conductive epitaxial layer or by vacuum deposition of a
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metallic conductive film on the substrate. The isolation process in the
semiconductor resistors is achieved by either implantation or mesa etch.
Metal films are usually preferred, however, since semiconducting films
exhibit nonlinear behavior at high current levels. Also, semiconductor resis-
tors in which a relatively low value of resistance is desired also require that
particular attention be given to resistance contributed by the ohmic contact.

The most commonly used thin-film resistor materials are tantalum nitride
and nichrome. Resistivities for these materials are 280-300 and 60-600
() -cm, respectively. The first-order calculation for a films resistance is
expressed in

length

R ==
P arca

(64)
where p is the bulk resistivity (in {2 -cm). When the thickness of the film is
identified, the resistivity is sometimes specified as a sheet resistivity pg (in
(}/0J). In this manner, Eq. (65) is obtained. Clearly, this form is of great
practical use, since one must only count the number of squares (length to
width ratio) that comprise the resistive path to determine the resistance.

length  pg length

R=p area  width (65)
=R P
Ps = thickness (66)

When corners or steps are encountered, the number of squares in the path
must be modified to allow for the discontinuity. For example, a uniform
right-angle bend has effectively 0.559 squares of path length. A nonuniform
right-angle bend of aspect ratio a has an effective path length given by Eq.
(67). Keep in mind that these are dc current crowding effects. We have yet
to apply the rf effects.

_ 21In[4a/(a’ + 1)] " (@>—1)cos '[(a® —1)/(a” + 1)]

Length = 2
a T am

(67)

It should come as no surprise to find that ‘‘lumped” thin-film resistors are
no more ideal than were the capacitors and inductors of the previous two
sections. Since thin-film resistors occupy surface area over the GaAs sub-
strate, distributed capacitance to the ground plane is present. Similarly, the
path length in the direction of current flow contributes a series inductance,
along with the desired resistance. If the resistor film is laser-trimmed, the
modified current flow path must be considered in order to determine its
microwave behavior. The inductive and capacitive branches are in the
necessary lowpass form for application of the equations from Fig. 8.33
(Section 8.5.1). This approach to modeling thin-film resistors will now be
discussed.
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C 2C ']'C ‘
oo,

Figure 8.38 Equivalent circuit for thin-film resistors.

When a thin-film resistor is viewed as a lossy transmission line that has
conceptually been partitioned into two cascaded sections, the lumped equi-
valent form illustrated in Fig. 8.38 is obtained. The inductance value L is
calculated from the pi model in Fig. 8.33 for half the resistors electrical
length. Similarly, C is determined from the same set of equations. The total
thin-film resistance is divided by two to obtain R in Fig. 8.38. This two
section (fifth-order) approach is valid as long as the resistor path is less than
90° in effective length. For longer structures, the number of sections in the
model can be increased; so, 45° per section is not exceeded.

TWO FET STAGES WITH INTERSTAGE MATCHING AND SELF-BIAS RESISTORS.
__ILLUSTRATES: TRANSMISSION LINE INDUCTORS,

OVERLAY CAPACITORS, AND

THIN-FILM RESISTORS.

a)

Figure 8.39 Application of lumped elements to MMICs.
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b) FOUR FET STAGES OF DISTRIBUTED AMPLIFICATION
—ILLUSTRATES: SPIRAL INDUCTORS,
OVERLAY CAPACITORS,
AND THIN-FILM RESISTORS.

Figure 8.39 continued

8.6 SUMMARY

This chapter began with a discussion of similarities in various FET amplifier
applications from the standpoint of matching network design constraints. It
was shown that the needs of each application could be reduced to the same
problem: obtaining a network that provides a desired driving-point impe-
dance behavior.

Much of the material in the chapter was accordingly devoted to present-
ing a systematic method for obtaining optimum matching networks. An
understanding of the limits of achievable match bandwidth performance is
essential before a design begins, so a detailed discussion of Bode’s limit
analysis was included. The methods presented did not require numerical
optimization nor other computer support to obtain solutions: thus, sufficient
detail was included for application by the reader. To facilitate an under-
standing of these techniques and their application to practical design prob-
lems, a two-stage power amplifier design example was included.

The material that followed the design example was directed to the
realization of FET microwave amplifier designs in a monolithic form. The
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use of transmission lines to approximate inductors and capacitors was first
presented. Next, “lumped” inductors, capacitors, and resistors were ex-
amined. In each case, it was seen that nonideal distributed effects were
needed to model the element adequately. There are no truly lumped
elements! The most useful forms were discussed. These included overlay
capacitors, rectangular spiral inductors, and metallic thin-film resistors.
Figure 8.39 illustrates application of these elements in MMIC realizations.
(Photos courtesy of AVANTEK, Inc.)
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